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Lecture 4: Monitors
• Introduction (Operations & Signalling Mechanisms);

• The Readers-Writers Problem SR;

• Emulating Semaphores with Monitors & Vice Versa

• The Dining Philosophers problem in SR;

• The Sleeping Barber Problem;

• Monitors in Java:

– Recap on Basic Concurrency in Java

– Queue Class in Java

– Readers/Writers Problem
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Monitors
• The main disadvantage with semaphores is that they are a low level 

programming construct. 

• In a many programmers project, if one forgets to do V()operation 

on a semaphore after a CS, then the whole system can deadlock.

• What is required is a higher level construct that groups the 

responsibility for correctness into a few modules.

• Monitors are such a construct. These are an extension of the 

monolithic monitor found in OS for allocating memory etc. 

• They encapsulate a set of procedures, and the data they operate on, 

into single modules (monitors)

• They guarantee that only one process can execute a procedure in the 

monitor at any given time (mutual exclusion). 

• Of course different processes can execute procedures from different 

monitors at the same time.
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Monitors (cont’d): Condition Variables

• Synchronisation is achieved by using condition variables, data 
structures that have 3 operations defined for them:

• wait (C) The process that called the monitor 
containing this operation is suspended in a 
FIFO queue associated with C. Mutual 
exclusion on the monitor is released.

• signal (C) If the queue associated with C is non-empty, 
then wake the process at the head of the 
queue.

• non-empty (C) Returns true if the queue associated with C 
is non-empty.

• Note the difference between the P in semaphores and 
wait(C) in monitors: latter always delays until signal(C) is 
called, former only if the semaphore variable is zero. 
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Monitors (cont’d): Signal & Continue

• If a monitor guarantees mutual exclusion:

– A process uses the signal operation 

– Thus awakens another process suspended in the monitor,

– So aren’t there 2 processes in the same monitor at the same time?

– Yes.

• To solve this, several signalling mechanisms can be 
implemented, the simplest is signal & continue mechanism. 

• Under these rules the procedure in the monitor that signals a 
condition variable is allowed to continue to completion, so the 
signal operation should be at the end of the procedure. 

• The process suspended on the condition variable, but is now 
awoken, is scheduled for immediate resumption on the exiting 
of  procedure which signalled the condition variable.
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Readers-Writers Using Monitors
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_monitor (RW_control)
op request_read ( ) 
op release_read ( )
op request_write ( ) 
op release_write ( )

_body (RW_control)
var nr:int := 0, nw:int := 0
_condvar (ok_to_read)
_condvar (ok_to_write)

_proc (request_read ( ))
do nw > 0 -> 

_wait (ok_to_read) 
od
nr := nr + 1

_proc_end

_proc (release_read ( ))
nr := nr - 1
if nr = 0 -> 

_signal(ok_to_write) 
fi

_proc_end

_proc (request_write ( ))
do nr > 0 or nw > 0 -> 
_wait (ok_to_write)
od
nw := nw + 1

_proc_end

_proc (release_write ( ))
nw := nw -1
_signal (ok_to_write)
_signal_all (ok_to_read)

_proc_end
_monitor_end

File rw_control.m

Readers-Writers Using Monitors (cont’d)

Resource Main (main.sr)
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resource main ( )

import RW_control

process reader (i:= 1 to 20)

RW_control.request_read( )

Read_Database ( )

RW_control.release_read( )

end

process writer (i := 1 to 5)

RW_control.request_write( )

Update_Database ( )

RW_control.release_write( )

end

end
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Emulating Semaphores Using Monitors
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_monitor semaphore
op p ( ), v ( )

_body semaphore
var s:int := 0
_condvar (not_zero)
_proc (p ( ))
if s=0 -> _wait(not_zero) fi 

# only _wait if s=0
s := s - 1

_proc_end

_proc (v ( ))
if not_empty(not_zero)=true-> 
_signal (not_zero) 
#only _signal if suspended processes

[] else -> s := s + 1
# else increment s
fi

_proc_end
_monitor_end

• Semaphores/monitors are concurrent programming primitives of 

equal power: Monitors are just a higher level construct.

Emulating Monitors Using Semaphores
• Firstly, need blocked-queue semaphores (SR is OK) 

• Secondly, need to implement signal and continue mechanism.

• Do this with

– a variable c_count, 

– one semaphore, s, to ensure mutual exclusion 

– & another, c_semaphore, to act as the condition variable. 

• _wait translates as:

• & _signal as:
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c_count := c_count + 1
V (s)
P (c_semaphore) #_wait always suspends
c_count := c_count – 1  # 1 less process in monitor

if c_count > 0 -> 
V (c_semaphore) # only _signal if 

[] else -> V (s) # waiting processes
fi
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Dining Philosophers Using Monitors
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_monitor (fork_mon)
op take_fork (i:int), 
op release_fork (i:int)

_body (fork_mon)
var fork [5]:int := ([5] 2)
_condvar (ok2eat, 5)

# define an array of 
# condition variables

_proc (take_fork (i))
if fork [i] != 2 -> 

_wait (ok2eat[i]) 
fi
fork [(i-1) mod 5]:=

fork[(i-1) mod 5]-1
fork [(i+1) mod 5] := 

fork[(i+1) mod 5]-1
_proc_end

_proc (release_fork (i))
fork [(i-1) mod 5] := 

fork[(i-1) mod 5]+1
fork [(i+1) mod 5] := 

fork[(i+1) mod 5]+1

if fork[(i+1)mod 5]=2 ->
_signal(ok2eat[(i+1)mod 5])
fi  #rh phil can eat

if fork[(i-1) mod 5]= 2 ->
_signal(ok2eat[(i-1)mod 5])
fi #lh phil can eat

_proc_end

_monitor_end

Dining Philosophers Using Monitors (cont’d)
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resource main ( )

import fork_mon

process philosopher (i:= 1 to 5)

do true ->

Think ( )

fork_mon.take_fork (i)

Eat ( )

fork_mon.release_fork(i)

od

end

end

• Using monitors yields a nice solution, since with semaphores you 

cannot test two semaphores simultaneously. 

• The monitor solution maintains an array fork which counts the 

number of free forks available to each philosopher.
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Dining Philosophers:Proof of No Deadlock
Theorem Solution Doesn’t Deadlock

• Proof:

– Let #� be the number of philosophers who are eating, and have 

therefore taken both forks. Then the following invariants are true 

from the program:

��� − ����	 ok2eat i ⇒ fork[i] < 2 eqn (1)

∑ ���
 i = 10 − 2(#�)�

i�� eqn (2)

• Deadlock implies #� = 0 and all philosophers are enqueued

on ok2eat and none are eating:

– If they are all enqueued then (1) implies ∑fork[i] ≤ 10

– If no philosopher is eating, then (2) implies ∑fork[i] ≤ 5. 

• Contradiction implies that the solution does not deadlock.

• But individual starvation can occur.  How? How to avoid?
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Monitors: The Sleeping Barber Problem
• A small barber shop has two doors, an entrance and an exit. 

• Inside is a barber who spends all his life serving customers, one at 
a time. 

1. When there are none in the shop, he sleeps in his chair. 

2. If a customer arrives and finds the barber asleep:

– he awakens the barber, 

– sits in the customer’s chair and sleeps while his hair is being cut. 

3. If a customer arrives and the barber is busy cutting hair, 

– the customer goes asleep in one of the two waiting chairs. 

4. When the barber finishes cutting a customer’s hair, 

– he awakens the customer and holds the exit door open for him. 

5. If there are waiting customers, 

– he awakens one and waits for the customer to sit in the barber’s chair,

– otherwise he sleeps.

CA463D Lecture Notes (Martin Crane 2013) 39



23/10/2013

CA463 Concurrent Programming (Martin 

Crane 2013) 7

Monitors: The Sleeping Barber Problem (cont’d)
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• The barber and customers are interacting processes, 

• The barber shop is the monitor in which they react.

Monitors: The Sleeping Barber Problem (cont’d)
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_proc (get_haircut()) 
do barber=0 -> 
_wait(barber_available)
od
barber := barber - 1 
chair := chair + 1
_signal (chair_occupied)
do open=0 -> _wait (door_open) od
open := open – 1
_signal (customer_left)

_proc_end # called by customer

_proc (get_next_customer( ))
barber := barber +1
_signal(barber_available)
do chair = 0 ->

_wait(chair_occupied)
od
chair := chair -1

_proc_end # called by barber

_proc (finished_cut( ))
open := open +1
_signal (door_open)
do open=0 -> 

_wait(customer_left)
od

_proc_end # called by barber
_monitor_end

_monitor (barber_shop)
op get_haircut( ), finish_cut( ), get_next_customer( )

_body (barber_shop)
var barber: int :=0, chair: int :=0, open: int:=0
_condvar (barber_available) # when barber > 0
_condvar (chair_occupied) # when chair > 0
_condvar (door_open) # when open > 0
_condvar (customer_left) # when open = 0
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Sleeping Barber Using Monitors (cont’d)

Resource Main (main.sr)
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resource main ( )

import barber_shop

process customer (i:= 1 to 5)

barber_shop.get_haircut(i)

sit_n_sleep()

end

process barber ()

do true ->

barber_shop.get_next_customer( )

cut_hair ( )

barber_shop.finished_cut( )

od

end

end

Sleeping Barber Using Monitors (cont’d)

• For the Barbershop, the monitor provides an environment  
for the customers and barber to rendezvous

• There are four synchronisation conditions:

– Customers have to wait for barber to become available to get a 
haircut

– Customers have to wait for barber to open door for them

– Barber needs to wait for customers to arrive

– Barber needs to wait for customer to leave

• Processes 

– wait on conditions using wait()s in loops

– Signal() at points when conditions are true
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Monitors in Java

• Java implements a slimmed down version of monitors.

• Java's monitor supports two kinds of thread 

synchronization: mutual exclusion and cooperation:

– Mutual exclusion, supported in the JVM via object locks (aka 

‘mutex’), enables multiple threads to independently work on 

shared data without interfering with each other. 

– Cooperation, supported in the JVM via the wait() & notify()

methods of class Object, enables threads to work together 

towards a common goal.
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Monitors in Java: Recap on Threads (cont’d)

• A Java thread is a lightweight process with own stack and execution 
context, and has access to all variables in its scope. 

• Threads are programmed by either extending Thread class or 

implementing the runnable interface. 

• Both of these are part of standard java.lang package.

• Thread instance is created by: 

Thread myProcess = new Thread ( );

• New thread started by executing:

MyProcess.start ( );

• startmethod invokes a runmethod in the thread. 

• As runmethod is undefined as yet, code above does nothing.
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Monitors in Java: Recap on Threads (cont’d)
• We can define the runmethod by extending the Thread class:

class myProcess extends Thread ( );

{

public void run ( )

{

System.out.println (“Hello from the thread”);

}

}

myProcess p = new myProcess ( );

p.start ( );

• Best to terminate threads by letting run method to terminate. 

• If you don’t need to keep a reference to the new thread can do 
away with p and simply write:

new myProcess ( ).start( );
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Monitors in Java: Recap on Threads (cont’d)
• As well as extending the Thread class, can create 

lightweight processes by implementing the Runnable
interface. 

• This has the advantage that you can make one of your own 
classes, or a system-defined class, into a process. 

• Cannot do this with threads as Java only allows you to 
extend one class at a time.

• Using the Runnable interface, previous example becomes:
class myProcess implements Runnable ( );

{

public void run ( ) {

System.out.println (“Hello from the thread”);

}

}

Runnable p = new myProcess ( );

New Thread(p).start ( );
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Monitors in Java: Recap on Threads (cont’d)
• If a thread has nothing immediate to do (e.g it updates the screen every 

second) then it should be suspended by putting it to sleep.

• There are two flavours of sleep method (specifying different times)

• join( )waits for the specified thread to complete and provides some 

basic synchronisation with other threads. 

• That is "join" start of a thread's execution to end of another thread's 

execution so that a thread will not start until other thread is done. 

• If join() is called on a Thread instance, the currently running thread will 

block until the Thread instance has finished executing:

try

{

otherThread.join (1000);// wait for 1 sec

}

catch (InterruptedException e ) {}
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Monitors in Java: Synchronization
• Conceptually threads in Java execute concurrently and 

therefore could simultaneously access shared variables. 

• To prevent 2 threads having problems when updating a shared 
variable, Java provides synchronisation via a slimmed-down 
monitor.

• Java’s keyword synchronized provides mutual exclusion and can 
be used with a group of statements or with an entire method.

• The following class will potentially have problems if its update 
method is executed by several threads concurrently.

class  Problematic

{

private int data = 0;

public void update ( ) {

data++;

}

}
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Monitors in Java: Synchronization (cont’d)

• Conceptually threads in Java execute concurrently and therefore 
could simultaneously access shared variables. 

class ExclusionByMethod {

private int data = 0;

public synchronized void update ( ){

data++;

}

}

• This is a simple monitor where the monitor’s permanent variables 
are private variables in the class; 

• Monitor procedures are implemented as synchronizedmethods. 

• Only 1 lock per object in Java so when a synchronizedmethod is 
invoked it waits to obtain the lock, execute the method, and then 
releases the lock.  

• This is known as intrinsic locking.
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Monitors in Java: Synchronization (cont’d)
• Another way to implement mutual exclusion is to use the 
synchronized statement within the body of a method.

class ExclusionByGroup {

private int data = 0;

public void update ( ){

synchronized (this) { // lock this object for

data++; // the following group of 
} // statements

}

}

• The keyword this refers to the object invoking the update method. 

• The lock is obtained on the invoking  object.

• A synchronized statement specifies that the following group of 
statements is executed as an atomic, non interruptible, action. 

• A synchronizedmethod is equivalent to a monitor procedure.
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Monitors in Java: Condition Variables

• While Java does not explicitly support condition variables, there is one 
implicitly declared for each synchronised object. 

• Java’s wait()& notify()resemble SR’s wait()& signal()but can only 
be executed in synchronized code parts (when object is locked)

• The wait()method releases the lock on an object and suspends the 
executing thread in a delay queue (one per object, usually FIFO).

• The notify()method awakens the thread at the front of the object’s delay 
queue. 

• notify() has signal and continue semantics, so the thread invoking notify 
continues to hold the lock on the object. 

• The awakened thread will execute at some future time when it can reacquire 
the lock on the object. 

• Java has notifyAll()method, similar to signal_all() in SR.
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Monitors in Java: Queue Class
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• The use of wait() and notify()in Java can be seen in the 

Queue implementation:
/**

* One thread calls push() to put an object on the queue. Another calls pop() to 

* get an object off the queue. If there is none, pop() waits until there is 

* using wait()/notify(). wait() and notify() must be used within a synchronized 

* method or block. 

*/

import java.util.*;

public class Queue {

LinkedList q = new LinkedList();  // Where objects are stored

public synchronized void push(Object o) {

q.add(o); // Append the object at end of the list

this.notify(); // Tell waiting threads data is ready

}

public synchronized Object pop() {

while(q.size() == 0) {

try { this.wait(); }

catch (InterruptedException e) { /* Ignore this exception */ }

}

return q.remove(0);

}

}
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Readers/Writers in Monitors: ReadersWriters Class
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class ReadersWriters

{

private int data = 0; // our database

private int nr = 0;

private synchronized void startRead(){

nr++;

}

private synchronized void endRead(){

nr--;

if (nr == 0) notify();  // wake a

} //waiting writer

public void read ( ) {

startRead ( );

System.out.println(“read”+data);

endRead ( );

}

public synchronized void write ( ) {

while (nr > 0)

try {

wait ( ); //wait if any 

//active readers

}

catch (InterruptedException ex){

return;

}

data++;

System.out.println(“write”+data);

notify (); // wake a waiting writer

}

}

Readers/Writers in Monitors: ReadersWriters Class
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class Reader extends Thread {

int rounds;

ReadersWriters RW;

Reader(int rounds, ReadersWriters RW) {

this.rounds = rounds;

this.RW = RW;

}

public void run ( ){

for (int i = 0; i < rounds; i++)

RW.read ( );

}

}

class Writer extends Thread {

int rounds;

ReadersWriters RW;

Writer(int rounds, ReadersWriters RW) {

this.rounds = rounds;

this.RW = RW;

}

public void run ( ){

for (int i = 0; i < rounds; i++)

RW.write ( );

}

}

class RWProblem {

static ReadersWriters RW = new 

ReadersWriters ( );

public static void main(String[] args){

int rounds = Integer.parseInt

(args[0], 10);

new Reader(rounds, RW).start ( );

new Writer(rounds, RW).start ( );

}

}

• This is the Reader Preference Solution.  How to make this fair?


