
23/10/2013

CA463 Concurrent Programming (Martin

Crane 2013) 1

Lecture 4: Monitors
• Introduction (Operations & Signalling Mechanisms);

• The Readers-Writers Problem SR;

• Emulating Semaphores with Monitors & Vice Versa

• The Dining Philosophers problem in SR;

• The Sleeping Barber Problem;

• Monitors in Java:

– Recap on Basic Concurrency in Java

– Queue Class in Java

– Readers/Writers Problem

CA463D Lecture Notes (Martin Crane 2013) 28

Monitors
• The main disadvantage with semaphores is that they are a low level

programming construct.

• In a many programmers project, if one forgets to do V()operation

on a semaphore after a CS, then the whole system can deadlock.

• What is required is a higher level construct that groups the

responsibility for correctness into a few modules.

• Monitors are such a construct. These are an extension of the

monolithic monitor found in OS for allocating memory etc.

• They encapsulate a set of procedures, and the data they operate on,

into single modules (monitors)

• They guarantee that only one process can execute a procedure in the

monitor at any given time (mutual exclusion).

• Of course different processes can execute procedures from different

monitors at the same time.
CA463D Lecture Notes (Martin Crane 2013) 29

23/10/2013

CA463 Concurrent Programming (Martin

Crane 2013) 2

Monitors (cont’d): Condition Variables

• Synchronisation is achieved by using condition variables, data
structures that have 3 operations defined for them:

• wait (C) The process that called the monitor
containing this operation is suspended in a
FIFO queue associated with C. Mutual
exclusion on the monitor is released.

• signal (C) If the queue associated with C is non-empty,
then wake the process at the head of the
queue.

• non-empty (C) Returns true if the queue associated with C
is non-empty.

• Note the difference between the P in semaphores and
wait(C) in monitors: latter always delays until signal(C) is
called, former only if the semaphore variable is zero.

CA463D Lecture Notes (Martin Crane 2013) 30

Monitors (cont’d): Signal & Continue

• If a monitor guarantees mutual exclusion:

– A process uses the signal operation

– Thus awakens another process suspended in the monitor,

– So aren’t there 2 processes in the same monitor at the same time?

– Yes.

• To solve this, several signalling mechanisms can be
implemented, the simplest is signal & continue mechanism.

• Under these rules the procedure in the monitor that signals a
condition variable is allowed to continue to completion, so the
signal operation should be at the end of the procedure.

• The process suspended on the condition variable, but is now
awoken, is scheduled for immediate resumption on the exiting
of procedure which signalled the condition variable.

CA463D Lecture Notes (Martin Crane 2013) 31

23/10/2013

CA463 Concurrent Programming (Martin

Crane 2013) 3

Readers-Writers Using Monitors

CA463D Lecture Notes (Martin Crane 2013) 32

_monitor (RW_control)
op request_read ()
op release_read ()
op request_write ()
op release_write ()

_body (RW_control)
var nr:int := 0, nw:int := 0
_condvar (ok_to_read)
_condvar (ok_to_write)

_proc (request_read ())
do nw > 0 ->

_wait (ok_to_read)
od
nr := nr + 1

_proc_end

_proc (release_read ())
nr := nr - 1
if nr = 0 ->

_signal(ok_to_write)
fi

_proc_end

_proc (request_write ())
do nr > 0 or nw > 0 ->
_wait (ok_to_write)
od
nw := nw + 1

_proc_end

_proc (release_write ())
nw := nw -1
_signal (ok_to_write)
_signal_all (ok_to_read)

_proc_end
_monitor_end

File rw_control.m

Readers-Writers Using Monitors (cont’d)

Resource Main (main.sr)

CA463D Lecture Notes (Martin Crane 2013) 33

resource main ()

import RW_control

process reader (i:= 1 to 20)

RW_control.request_read()

Read_Database ()

RW_control.release_read()

end

process writer (i := 1 to 5)

RW_control.request_write()

Update_Database ()

RW_control.release_write()

end

end

23/10/2013

CA463 Concurrent Programming (Martin

Crane 2013) 4

Emulating Semaphores Using Monitors

CA463D Lecture Notes (Martin Crane 2013) 34

_monitor semaphore
op p (), v ()

_body semaphore
var s:int := 0
_condvar (not_zero)
_proc (p ())
if s=0 -> _wait(not_zero) fi

only _wait if s=0
s := s - 1

_proc_end

_proc (v ())
if not_empty(not_zero)=true->
_signal (not_zero)
#only _signal if suspended processes

[] else -> s := s + 1
else increment s
fi

_proc_end
_monitor_end

• Semaphores/monitors are concurrent programming primitives of

equal power: Monitors are just a higher level construct.

Emulating Monitors Using Semaphores
• Firstly, need blocked-queue semaphores (SR is OK)

• Secondly, need to implement signal and continue mechanism.

• Do this with

– a variable c_count,

– one semaphore, s, to ensure mutual exclusion

– & another, c_semaphore, to act as the condition variable.

• _wait translates as:

• & _signal as:

CA463D Lecture Notes (Martin Crane 2013) 35

c_count := c_count + 1
V (s)
P (c_semaphore) #_wait always suspends
c_count := c_count – 1 # 1 less process in monitor

if c_count > 0 ->
V (c_semaphore) # only _signal if

[] else -> V (s) # waiting processes
fi

23/10/2013

CA463 Concurrent Programming (Martin

Crane 2013) 5

Dining Philosophers Using Monitors

CA463D Lecture Notes (Martin Crane 2013) 36

_monitor (fork_mon)
op take_fork (i:int),
op release_fork (i:int)

_body (fork_mon)
var fork [5]:int := ([5] 2)
_condvar (ok2eat, 5)

define an array of
condition variables

_proc (take_fork (i))
if fork [i] != 2 ->

_wait (ok2eat[i])
fi
fork [(i-1) mod 5]:=

fork[(i-1) mod 5]-1
fork [(i+1) mod 5] :=

fork[(i+1) mod 5]-1
_proc_end

_proc (release_fork (i))
fork [(i-1) mod 5] :=

fork[(i-1) mod 5]+1
fork [(i+1) mod 5] :=

fork[(i+1) mod 5]+1

if fork[(i+1)mod 5]=2 ->
_signal(ok2eat[(i+1)mod 5])
fi #rh phil can eat

if fork[(i-1) mod 5]= 2 ->
_signal(ok2eat[(i-1)mod 5])
fi #lh phil can eat

_proc_end

_monitor_end

Dining Philosophers Using Monitors (cont’d)

CA463D Lecture Notes (Martin Crane 2013) 37

resource main ()

import fork_mon

process philosopher (i:= 1 to 5)

do true ->

Think ()

fork_mon.take_fork (i)

Eat ()

fork_mon.release_fork(i)

od

end

end

• Using monitors yields a nice solution, since with semaphores you

cannot test two semaphores simultaneously.

• The monitor solution maintains an array fork which counts the

number of free forks available to each philosopher.

23/10/2013

CA463 Concurrent Programming (Martin

Crane 2013) 6

Dining Philosophers:Proof of No Deadlock
Theorem Solution Doesn’t Deadlock

• Proof:

– Let #� be the number of philosophers who are eating, and have

therefore taken both forks. Then the following invariants are true

from the program:

��� − ����	 ok2eat i ⇒ fork[i] < 2 eqn (1)

∑ ���
 i = 10 − 2(#�)�

i�� eqn (2)

• Deadlock implies #� = 0 and all philosophers are enqueued

on ok2eat and none are eating:

– If they are all enqueued then (1) implies ∑fork[i] ≤ 10

– If no philosopher is eating, then (2) implies ∑fork[i] ≤ 5.

• Contradiction implies that the solution does not deadlock.

• But individual starvation can occur. How? How to avoid?
CA463D Lecture Notes (Martin Crane 2013) 38

Monitors: The Sleeping Barber Problem
• A small barber shop has two doors, an entrance and an exit.

• Inside is a barber who spends all his life serving customers, one at
a time.

1. When there are none in the shop, he sleeps in his chair.

2. If a customer arrives and finds the barber asleep:

– he awakens the barber,

– sits in the customer’s chair and sleeps while his hair is being cut.

3. If a customer arrives and the barber is busy cutting hair,

– the customer goes asleep in one of the two waiting chairs.

4. When the barber finishes cutting a customer’s hair,

– he awakens the customer and holds the exit door open for him.

5. If there are waiting customers,

– he awakens one and waits for the customer to sit in the barber’s chair,

– otherwise he sleeps.

CA463D Lecture Notes (Martin Crane 2013) 39

23/10/2013

CA463 Concurrent Programming (Martin

Crane 2013) 7

Monitors: The Sleeping Barber Problem (cont’d)

CA463D Lecture Notes (Martin Crane 2013) 40

• The barber and customers are interacting processes,

• The barber shop is the monitor in which they react.

Monitors: The Sleeping Barber Problem (cont’d)

CA463D Lecture Notes (Martin Crane 2013) 41

_proc (get_haircut())
do barber=0 ->
_wait(barber_available)
od
barber := barber - 1
chair := chair + 1
_signal (chair_occupied)
do open=0 -> _wait (door_open) od
open := open – 1
_signal (customer_left)

_proc_end # called by customer

_proc (get_next_customer())
barber := barber +1
_signal(barber_available)
do chair = 0 ->

_wait(chair_occupied)
od
chair := chair -1

_proc_end # called by barber

_proc (finished_cut())
open := open +1
_signal (door_open)
do open=0 ->

_wait(customer_left)
od

_proc_end # called by barber
_monitor_end

_monitor (barber_shop)
op get_haircut(), finish_cut(), get_next_customer()

_body (barber_shop)
var barber: int :=0, chair: int :=0, open: int:=0
_condvar (barber_available) # when barber > 0
_condvar (chair_occupied) # when chair > 0
_condvar (door_open) # when open > 0
_condvar (customer_left) # when open = 0

23/10/2013

CA463 Concurrent Programming (Martin

Crane 2013) 8

Sleeping Barber Using Monitors (cont’d)

Resource Main (main.sr)

CA463D Lecture Notes (Martin Crane 2013) 42

resource main ()

import barber_shop

process customer (i:= 1 to 5)

barber_shop.get_haircut(i)

sit_n_sleep()

end

process barber ()

do true ->

barber_shop.get_next_customer()

cut_hair ()

barber_shop.finished_cut()

od

end

end

Sleeping Barber Using Monitors (cont’d)

• For the Barbershop, the monitor provides an environment
for the customers and barber to rendezvous

• There are four synchronisation conditions:

– Customers have to wait for barber to become available to get a
haircut

– Customers have to wait for barber to open door for them

– Barber needs to wait for customers to arrive

– Barber needs to wait for customer to leave

• Processes

– wait on conditions using wait()s in loops

– Signal() at points when conditions are true

CA463D Lecture Notes (Martin Crane 2013) 43

23/10/2013

CA463 Concurrent Programming (Martin

Crane 2013) 9

Monitors in Java

• Java implements a slimmed down version of monitors.

• Java's monitor supports two kinds of thread

synchronization: mutual exclusion and cooperation:

– Mutual exclusion, supported in the JVM via object locks (aka

‘mutex’), enables multiple threads to independently work on

shared data without interfering with each other.

– Cooperation, supported in the JVM via the wait() & notify()

methods of class Object, enables threads to work together

towards a common goal.

CA463D Lecture Notes (Martin Crane 2013) 44

Monitors in Java: Recap on Threads (cont’d)

• A Java thread is a lightweight process with own stack and execution
context, and has access to all variables in its scope.

• Threads are programmed by either extending Thread class or

implementing the runnable interface.

• Both of these are part of standard java.lang package.

• Thread instance is created by:

Thread myProcess = new Thread ();

• New thread started by executing:

MyProcess.start ();

• startmethod invokes a runmethod in the thread.

• As runmethod is undefined as yet, code above does nothing.

CA463D Lecture Notes (Martin Crane 2013) 45

23/10/2013

CA463 Concurrent Programming (Martin

Crane 2013) 10

Monitors in Java: Recap on Threads (cont’d)
• We can define the runmethod by extending the Thread class:

class myProcess extends Thread ();

{

public void run ()

{

System.out.println (“Hello from the thread”);

}

}

myProcess p = new myProcess ();

p.start ();

• Best to terminate threads by letting run method to terminate.

• If you don’t need to keep a reference to the new thread can do
away with p and simply write:

new myProcess ().start();

CA463D Lecture Notes (Martin Crane 2013) 46

Monitors in Java: Recap on Threads (cont’d)
• As well as extending the Thread class, can create

lightweight processes by implementing the Runnable
interface.

• This has the advantage that you can make one of your own
classes, or a system-defined class, into a process.

• Cannot do this with threads as Java only allows you to
extend one class at a time.

• Using the Runnable interface, previous example becomes:
class myProcess implements Runnable ();

{

public void run () {

System.out.println (“Hello from the thread”);

}

}

Runnable p = new myProcess ();

New Thread(p).start ();

CA463D Lecture Notes (Martin Crane 2013) 47

23/10/2013

CA463 Concurrent Programming (Martin

Crane 2013) 11

Monitors in Java: Recap on Threads (cont’d)
• If a thread has nothing immediate to do (e.g it updates the screen every

second) then it should be suspended by putting it to sleep.

• There are two flavours of sleep method (specifying different times)

• join()waits for the specified thread to complete and provides some

basic synchronisation with other threads.

• That is "join" start of a thread's execution to end of another thread's

execution so that a thread will not start until other thread is done.

• If join() is called on a Thread instance, the currently running thread will

block until the Thread instance has finished executing:

try

{

otherThread.join (1000);// wait for 1 sec

}

catch (InterruptedException e) {}

CA463D Lecture Notes (Martin Crane 2013) 48

Monitors in Java: Synchronization
• Conceptually threads in Java execute concurrently and

therefore could simultaneously access shared variables.

• To prevent 2 threads having problems when updating a shared
variable, Java provides synchronisation via a slimmed-down
monitor.

• Java’s keyword synchronized provides mutual exclusion and can
be used with a group of statements or with an entire method.

• The following class will potentially have problems if its update
method is executed by several threads concurrently.

class Problematic

{

private int data = 0;

public void update () {

data++;

}

}

CA463D Lecture Notes (Martin Crane 2013) 49

23/10/2013

CA463 Concurrent Programming (Martin

Crane 2013) 12

Monitors in Java: Synchronization (cont’d)

• Conceptually threads in Java execute concurrently and therefore
could simultaneously access shared variables.

class ExclusionByMethod {

private int data = 0;

public synchronized void update (){

data++;

}

}

• This is a simple monitor where the monitor’s permanent variables
are private variables in the class;

• Monitor procedures are implemented as synchronizedmethods.

• Only 1 lock per object in Java so when a synchronizedmethod is
invoked it waits to obtain the lock, execute the method, and then
releases the lock.

• This is known as intrinsic locking.

CA463D Lecture Notes (Martin Crane 2013) 50

Monitors in Java: Synchronization (cont’d)
• Another way to implement mutual exclusion is to use the
synchronized statement within the body of a method.

class ExclusionByGroup {

private int data = 0;

public void update (){

synchronized (this) { // lock this object for

data++; // the following group of
} // statements

}

}

• The keyword this refers to the object invoking the update method.

• The lock is obtained on the invoking object.

• A synchronized statement specifies that the following group of
statements is executed as an atomic, non interruptible, action.

• A synchronizedmethod is equivalent to a monitor procedure.

CA463D Lecture Notes (Martin Crane 2013) 51

23/10/2013

CA463 Concurrent Programming (Martin

Crane 2013) 13

Monitors in Java: Condition Variables

• While Java does not explicitly support condition variables, there is one
implicitly declared for each synchronised object.

• Java’s wait()& notify()resemble SR’s wait()& signal()but can only
be executed in synchronized code parts (when object is locked)

• The wait()method releases the lock on an object and suspends the
executing thread in a delay queue (one per object, usually FIFO).

• The notify()method awakens the thread at the front of the object’s delay
queue.

• notify() has signal and continue semantics, so the thread invoking notify
continues to hold the lock on the object.

• The awakened thread will execute at some future time when it can reacquire
the lock on the object.

• Java has notifyAll()method, similar to signal_all() in SR.

CA463D Lecture Notes (Martin Crane 2013) 52

Monitors in Java: Queue Class

CA463D Lecture Notes (Martin Crane 2013) 53

• The use of wait() and notify()in Java can be seen in the

Queue implementation:
/**

* One thread calls push() to put an object on the queue. Another calls pop() to

* get an object off the queue. If there is none, pop() waits until there is

* using wait()/notify(). wait() and notify() must be used within a synchronized

* method or block.

*/

import java.util.*;

public class Queue {

LinkedList q = new LinkedList(); // Where objects are stored

public synchronized void push(Object o) {

q.add(o); // Append the object at end of the list

this.notify(); // Tell waiting threads data is ready

}

public synchronized Object pop() {

while(q.size() == 0) {

try { this.wait(); }

catch (InterruptedException e) { /* Ignore this exception */ }

}

return q.remove(0);

}

}

23/10/2013

CA463 Concurrent Programming (Martin

Crane 2013) 14

Readers/Writers in Monitors: ReadersWriters Class

CA463D Lecture Notes (Martin Crane 2013) 54

class ReadersWriters

{

private int data = 0; // our database

private int nr = 0;

private synchronized void startRead(){

nr++;

}

private synchronized void endRead(){

nr--;

if (nr == 0) notify(); // wake a

} //waiting writer

public void read () {

startRead ();

System.out.println(“read”+data);

endRead ();

}

public synchronized void write () {

while (nr > 0)

try {

wait (); //wait if any

//active readers

}

catch (InterruptedException ex){

return;

}

data++;

System.out.println(“write”+data);

notify (); // wake a waiting writer

}

}

Readers/Writers in Monitors: ReadersWriters Class

CA463D Lecture Notes (Martin Crane 2013) 55

class Reader extends Thread {

int rounds;

ReadersWriters RW;

Reader(int rounds, ReadersWriters RW) {

this.rounds = rounds;

this.RW = RW;

}

public void run (){

for (int i = 0; i < rounds; i++)

RW.read ();

}

}

class Writer extends Thread {

int rounds;

ReadersWriters RW;

Writer(int rounds, ReadersWriters RW) {

this.rounds = rounds;

this.RW = RW;

}

public void run (){

for (int i = 0; i < rounds; i++)

RW.write ();

}

}

class RWProblem {

static ReadersWriters RW = new

ReadersWriters ();

public static void main(String[] args){

int rounds = Integer.parseInt

(args[0], 10);

new Reader(rounds, RW).start ();

new Writer(rounds, RW).start ();

}

}

• This is the Reader Preference Solution. How to make this fair?

